Global solution and long-time behavior for a problem of phase segregation of the Allen-Cahn type

نویسندگان

  • Pierluigi Colli
  • Gianni Gilardi
  • Paolo Podio-Guidugli
  • Jürgen Sprekels
چکیده

In this paper we study a model for phase segregation consisting in a sistem of a partial and an ordinary differential equation. By a careful definition of maximal solution to the latter equation, this system reduces to an Allen-Cahn equation with a memory term. Global existence and uniqueness of a smooth solution are proven and a characterization of the ω-limit set is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Global Solution to the Allen-cahn Equation with Singular Potentials and Dynamic Boundary Conditions

We prove well-posedness results for the solution to an initial and boundaryvalue problem for an Allen-Cahn type equation describing the phenomenon of phase transitions for a material contained in a bounded and regular domain. The dynamic boundary conditions for the order parameter have been recently proposed by some physicists to account for interactions with the walls (see [14] and [20]). We s...

متن کامل

Analysis and simulation for an isotropic phase-field model describing grain growth

A phase-field system of coupled Allen–Cahn type PDEs describing grain growth is analyzed and simulated. In the periodic setting, we prove the existence and uniqueness of global weak solutions to the problem. Then we investigate the long-time behavior of the solutions within the theory of infinite-dimensional dissipative dynamical systems. Namely, the problem possesses a global attractor as well...

متن کامل

Long-time behavior for the Hele-Shaw-Cahn-Hilliard system

We study the long time behavior of the Hele-Shaw-Cahn-Hilliard system (HSCH) which models two phase incompressible Darcian flow in porous media with matched density but arbitrary viscosity contrast. We demonstrate that the ω-limit set of each trajectory is a single stationary solution of the system via Lojasiewicz-Simon type technique. Moreover, a rate of convergence has been established. Event...

متن کامل

Asymptotic Behavior of Attractors for Inhomogeneous Allen-cahn Equations

We consider front propagation problems for forced mean curvature flows with a transport term and their phase field variants that take place in stratified media, i.e., heterogeneous media whose characteristics do not vary in one direction. We provide a convergence result relating asymptotic in time front propagation in the diffuse interface case to that in the sharp interface case, for suitably ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009